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1 Delay Tracking
For an incoming wavefront from the Sun the path lengths to different antennas of an array are generally
unequal and vary as the earth rotates. The relative time differences in the wavefront arrival at the antennas
are referred to as the geometric delays, τg. To preserve the correlation between the signals received at
different antennas, it is necessary to compensate for the different geometric delays. Thus the signal received
at each antenna is subjected to an instrumental delay τi that is adjusted continuously so that τg + τi plus
delays in transmission lines, etc. are the same for all antennas. The signals at the correlator inputs are
thereby aligned in time with respect to a common wavefront, incident from the desired field center. If
the instrumental delays are applied to the signals at the same frequency as that at which they are received,
then the phase shifts resulting from the geometrical delays are exactly compensated by those provided by the
instrumental delays. In such a case the fringe pattern tracks the field center on the sky and there are no fringe
oscillations at the correlator output. In practice, however, the instrumental delays are usually introduced at
an intermediate frequency, which differs from the frequency at which they are received by an LO frequency
νLO. Thus the signals at the correlator input differ by a phase shift of magnitude 2πνLOτg, which results in
fringe oscillations at the correlator output as τg varies. Also, in a practical situation the adjustment of the
instrumental delays is not precisely continuous but is performed in small discrete steps. These are inserted
after the signals have been digitized and the sample interval τs provides a convenient increment for coarse
delay adjustment. For Nyquist sampling, τs = 1/2Δν where Δν is the signal bandwidth. Fine adjustment
of the delay, to within a small fraction of τs, can be effected by introducing corrective phase shifts which
vary linearly with frequency across the ∼ 4096 signal channels of FASR.

In an array with a large number of antennas, the instrumental delays are adjusted relative to the geometric
delay for a reference antenna, which can be arbitrarily chosen, and for which the instrumental delay can
remain constant. The delay error for any antenna is the difference between the total delay from the wavefront
to the correlator for that antenna and for the reference antenna. When the delay error becomes as large as
±τs/2, the instrumental delay is adjusted by an increment ∓τs. Thus the delay error for a single antenna
is uniformly distributed over ±τs/2. For any pair of antennas (not including the reference antenna) it can
generally be assumed that the combined delay error has a triangular probability distribution as shown in
Fig. 1, with extreme values ±τs and rms value τs/

√
6. The instrumental delays are inserted after sampling,

which is applied to a frequency band NΔν to (N + 1)Δν , where N is an integer. For any value of N the
frequency of the sampled data is effectively within the baseband range from 0 to Δν . The rms frequency
within this band is Δν/

√
3 and the corresponding rms phase error is 2π(Δν/

√
3)(τs/

√
6) = π/3

√
2 = 42◦.

For a continuum correlator the resulting loss in sensitivity is 23% (see Appendix), and results from the fact
that the angles of the fringes on the sky vary with frequency, so over the full bandwidth the fringes tend to
“wash out”. Dividing the bandwidth into as few as, e.g., 16 channels would reduce the sensitivity loss to a
few tenths of 1%. In FASR the digital signals will be filtered into ∼ 4096 channels before cross correlation
to allow subsequent rejection of RFI. For each antenna pair the ∼ 4096 corresponding channel pairs will be
individually cross correlated. Because of the much smaller bandwidths after channelization, the variation of
the phase errors within a single channel will be negligibly small, so no loss in signal amplitude will occur: see
Carlson and Dewdney (2000) for a description of a similar case. However, the delay errors cause phase errors
that vary from channel to channel across the band, and these should be corrected for. At any instant the
phase error is equal to 2π× (the delay error) × (the corresponding channel frequency within the baseband
range 0-Δν) radians. These phase corrections can be inserted in combination with the phase changes to
remove the fringe oscillations considered in Section 2.

The maximum rate of change of delay occurs for a baseline of 5 km (E-W) and the Sun at zero declination,
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Figure 1: Probability distribution p(Δτ ) of the delay error Δτ for a pair of antennas. The minimum
increment of the instrumental compensating delay is equal to τs, the time interval between samples of the
signal. The expression shown for p(Δτ ) applies to the part of the probability function for which Δτ ≥ 0.

and is
dτ

dt
= ωD cos(H)/c (1)

where D is the baseline length, H is the hour angle, ω = 7.27 × 10−5 rad/s is the angular rate of rotation
of the Earth relative to the Sun, and c is the speed of light. Thus, for the Sun on the meridian and D = 5
km, the maximum value of dτ

dt is 1.21× 10−9 seconds of delay per second of time. For FASR, τs is chosen to
be 8.33× 10−10 s, which is the Nyquist sampling rate for a bandwidth of Δν = 600 MHz. (The bandwidth
determined by the frequency response of the receivers is 500 MHz, which is centered within the 600 MHz.)
The minimum time for the geometric delay to change by one sample interval is τs divided by the maximum
value of dτ

dt which is 0.69 s. The time interval over which the correlator output is averaged has been chosen
as 20 ms based on computing considerations, and since 20 ms is small compared with 0.69 s, resetting the
coarse delays at fixed 20 ms intervals should not be a problem. Thus the coarse delays can remain constant
during each averaging period, which simplifies the signal processing.

It is also useful to calculate the rate of change of the fine delay correction. The fine-delay phase correction
is equal to 2π× (the fine-delay error) × (the corresponding channel frequency within the baseband range
0 − Δν) radians. The factor dτg

dt on which the change of delay error depends [see Eq. (1)] varies relatively
slowly and over short intervals of time can be considered constant. The rate of change of dτg

dt is

d2τg

dt2
=

−ωD sin(H)
c

dH

dt
=

−ω2D sin(H)
c

, (2)

since dh
dt is equal to ω which is constant with respect to time. The highest fringe frequency occurs at hour

angle H = 0 (at the meridian), but the highest rate of change of fringe frequency occurs at H = 90◦. For
a baseline of D = 5 km and H = 90◦, d2τg

dt2 = 8.81 × 10−14 seconds of delay per (second of time)2. If the

compensation for the delay is exact at time t = 0, then after time t the rate of change of delay is d2τg

dt2 t,

the mean rate of change over time t is 1
2

d2τg

dt2 t, and the accumulated delay error is 1
2

d2τg

dt2 t2. For the highest
frequency channel, centered at ∼ 600 MHz, 1◦ of accumulated phase error occurs for t = 10 s. Thus the
proportionality factor for the phase as a function of time, for the worst-case (5 km baseline and 600 MHz
channel), should be recalculated after about 10 s.
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2 Fringe Rotation
Since the instrumental delay remains constant during each of the 20 ms observing periods, the fringe fre-
quency within these periods is equal to dτ

dt from Eq. (1) multiplied by the observing frequency1 . Thus the
maximum fringe frequency is 1.21 × 10−9 × 20 × 109 = 24 Hz for 20 GHz observing frequency or 36 Hz
for 30 GHz. The effect of time averaging on the fringes is to convolve the sinusoidal fringe function with
a rectangular function of width equal to the averaging time. If we consider stopping fringe oscillations of
frequency νf at the correlator output, i.e. after averaging for a time τav, the averaging reduces the fringe
amplitude by a factor2 sinc(νfτav) = sin(πνf τav)/πνfτav. For 20 ms and 24 Hz the amplitude factor is
0.66 and for 36 Hz it is 0.34. These represent a reduction in signal-to-noise ratio for the fastest fringes,
and therefore fringe stopping after 20 ms averaging is not deemed practicable. The proposal is to insert the
required phase corrections into the digitized data prior to cross correlation. They are then applied to each
of the Na antennas, whereas after cross correlation the corrections would be applied to the N2

a /2 antenna
pairs. Subtraction of φ radians from the phase of a complex number (Xr + iXi) that represents a signal
sample results in

[Xr cos(φ) + Xi sin(φ)] + i[Xi cos(φ) − Xr sin(φ)]. (3)

It is useful to calculate the rate of change of the fringe correction, for which we need d2τg

dt2 . From Eq. (2)

and the discussion following it, the maximum value of d2τg

dt2
within FASR is 8.81 × 10−14 seconds of delay

per (second of time)2. Suppose that the fringe frequency, dτg

dt ν where ν is the signal frequency received at

the antenna, is correct at time t = 0. At time t the fringe frequency will have changed by d2τg

dt2
νt and the

accumulated fringe error will be 1
2

d2τg

dt2 νt2 cycles. For baseline D = 5 km, H = 90◦, and frequency 20 GHz,
a fringe phase error of 1◦ occurs after 1.78 sec. So, in applying the fringe phase correction, the factor by
which the fringe frequency is calculated should be changed within this interval in the worst (longest baseline
and highest frequency) case.

3 Phase Switching
Phase switching is used in radio interferometry to mitigate errors that result from unwanted components
that infiltrate the receiving channels of different antennas and introduce spurious correlation3. At low levels,
these can be introduced through power supplies, local oscillators, monitoring circuitry, etc. Phase switching
also removes the effect of any DC offset in the zero level of the digitizer. In the VLA it is found to be
helpful in reducing low level unwanted responses and thus improving dynamic range. The principle involved
is to modulate the phase of the wanted signal early in the system using phase shifts of magnitude π (which
are equivalent to inversion of the signal voltage). These can be removed after the signal is digitized since
infiltration of unwanted components does not then occur. The removal is performed by repeating the first
switching sequence. Thus, at the correlator input, the unwanted components are modulated but the wanted
ones are not. For each antenna a different switching function is used, any pair of which are orthogonal,
resulting in elimination of the unwanted components in the averaging at the correlator output.

It is difficult to say whether phase switching is essential in observations of a strong source such as the
Sun, but it is likely to be helpful in observations of calibrators. Phase switching requires a set of two-state
(±1) switching functions that are mutually orthogonal and repeat after a fixed time interval referred to as
the time base. Unwanted signals are most efficiently removed by averaging for a period equal to the time
base (or an integral multiple thereof). For FASR we therefore consider a time base equal to the chosen 20

1If the instrumental delays were varied continuously rather than in increments, the fringe frequency would be equal to dτ
dt

multiplied by the difference between the observing frequency and the frequency at which the instrumental delays are inserted.
2For example, the amplitude factor takes values of 0.99, 0.98, 0.95, and 0.90 for values of (νf τav) 0.078, 0.1106, 0.176, and

0.250, respectively. An averaging time of 1/13 of the fringe period produces an amplitude loss of approximately 1%, which is
about the maximum generally tolerable.

3In cases where there are many fringes within the data averaging time, as in VLBI, phase switching is not necessary. However,
in FASR, for the fastest fringes (∼ 24 Hz) only half a cycle occurs within 20 ms.
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Figure 2: Delays in the FASR system that are large enough to affect the correlation of the Walsh functions
used in phase switching. Unwanted components that infiltrate the system after the geometric delay but before
the instrumental delay are removed by the phase switching. Here t is time relative to a signal wavefront that
intercepts the delay reference antenna.

ms averaging period. Walsh functions provide convenient orthogonal switching functions: see, for example,
Beauchamp (1975), Emerson (2005), or Thompson et al. (2001, pp. 242-246). Let the shortest interval
between two transitions in a set of Walsh functions be Δ. The time base for the Walsh function set, which is
the time interval after which all the functions repeat, is equal to Δ multiplied by a power-of-two integer, n.
For any chosen values of the time base and the minimum interval Δ, there are n mutually orthogonal Walsh
functions4. Thus, we can choose n as the lowest power-of-two integer that is greater than Na which, for the
nominal FASR value of Na � 60, is 64. We choose the time base to be equal to the required data-averaging
time of 20 ms for FASR, in which case Δ = 20/64 = 0.312 ms.

In designing the phase switching system details of timing must be considered. In general, the orthogonality
of Walsh functions requires that there should be no relative time shifts between the functions5. The first
switching occurs at the antennas and the second one after digitization at the central electronics facility.
Between these two points the signals suffer a transmission time delay τtr in optical fiber or cable, which is
constant in time but different for each antenna. The major system delays are shown in Fig. 2. Delays in
the analog or digital circuitry can generally be neglected since they are small. There are three main timing
requirements. (1) As discussed in Section 1, the total delay from the incident wavefront to the correlator
input, τg + τtr + τi, must be the same for all antennas. This is implemented through adjustment of τi to
maintain the correlation of the wanted signals. (2) The second phase switching should follow the first with a
delay τtr so that the transitions in the wanted signals will be aligned to cancel precisely. (3) Both switchings
should be delayed by the geometric delay of the antenna, τg , so that at the correlator input, the switching
transitions in the unwanted components are aligned in time from one antenna to another.

The delay τg in the two switchings described above needs to be updated periodically as the geometric
delays change. It is useful to consider the effect of omitting this delay since this would somewhat simplify
the timing system. This depends upon the overall timing accuracy required for the Walsh transitions. For
the wanted components, consider the effect of a small time offset δ in the timing of the first and second
switchings. For each transition, the cancellation of the first switching fails to occur for a period δ. In the
cross correlation with the signal from another antenna, the correlator is reversed for a period δ and thereby
cancels an equivalent interval of the unreversed output. Thus, for each transition, there is an effective loss

4For any set of n Walsh functions, n/2 are even with respect to the center of the time base, and n/2 are odd. These two sets
are referred to as Cal and Sal functions, respectively, by analogy with the symmetry of cosine and sine functions. The sequency
of a Walsh function is defined as twice the number of transitions within the time base. Any complete set of n Walsh functions
contains one with no transitions, i.e. zero sequency.

5Pairs consisting of an even (Cal) an odd (Sal) functions remain orthogonal in the presence of time shifts, but such combi-
nations are only possible for half the antenna pairs.

4



of signal for a period 2δ. The average fractional loss of sensitivity is 2ntδ/τtb where τtb is the time base, and
nt is the number of transitions within the time base (i.e. half the sequency). Omitting the delay τg in the
two switchings would result in an offset equal to the geometric delay. For a baseline of 5 km the maximum
geometric delay is 16.67 μs. The equivalent signal loss is 33.3 μs per Walsh transition, which is 1/600 of the
20 ms time base. Thus if the maximum tolerable loss in sensitivity is 1%, and if the τg delay in the switchings
is omitted, the maximum allowable number of transitions within the time base is 6. However, this is for
the longest baselines, and higher numbers of transitions would be tolerable for shorter baselines. Thus, with
a careful assignment of the sequencies, omission of the τg delays in the switching may be tolerable. A full
analysis of the sensitivity loss would require details of the antenna locations. For calibration observations
using radio sources with accurately known positions, which will be necessary to establish parameters of the
array such as the relative positions of the antennas, the data averaging times can be extended to several
seconds, i.e. at least two orders of magnitude greater that the 20 ms required for the solar observations. The
intervals between Walsh transitions can thus be correspondingly increased, in which case any effect of the
τg delay in the switching times is entirely negligible. Note that for solar observations the effect of omitting
the delay in the switchings is small, but the effect of doing so varies with the position of the Sun in the sky,
and would not be removed by calibration observations.

The effect of a timing offset on the rejection of the unwanted components depends on the loss in orthog-
onality of the Walsh functions at different antennas. This is more complicated than the effect of an offset on
two identical Walsh functions discussed above. The loss in orthogonality depends upon the sequencies of the
two functions involved, as shown by Emerson (2005). For example, a Walsh pair consisting of a symmetric
(Cal type) and an asymmetric (Sal type) function, of the same set, remain orthogonal in the presence of a
time offset. In other cases, the remnant of the correlation of the unwanted components is never more than
the loss in correlation for a pair of identical functions [see Fig. 3 in Emerson (2005)]. Thus the restriction
on the number of transitions nt, discussed above for the wanted signals, also ensures that the unwanted
responses are reduced by a least a factor of 100. It is clearly beneficial to use equal numbers of Cal and Sal
type functions in the array so that for at least half of the antenna pairings the orthogonality is independent
of time offsets.

In both the filtering of the signals into the ∼ 4096 channels and the Hilbert transformation of the signals,
the computation of each output sample involves a short time sequence of signal samples which should not
contain a phase reversal. Therefore, the second phase switching, which removes the phase transitions from the
wanted signals, should occur before the filtering and Hilbert transformation steps. The fine delay adjustment
can be ignored with respect to its effect on the phase switching, and the sequence of operations that occurs
after digitization of the signals should be as follows.

1.) Apply the second phase switching by applying sign reversals to the samples.
2.) Insert coarse instrumental delays.
3.) Apply the digital filtering algorithm to filter the signal into 4096 frequency channels.
4.) Decimate the data to the Nyquist rate for the channel bandwidth.
5.) Apply a Hilbert transform to provide an imaginary part so that the data are then in complex form.
6.) Adjust the phase of each sample to correct for the residual delay errors and remove the fringe oscillation.
7.) Perform the cross correlations.
8.) Apply the 20 ms averaging.

The second phase switching could be applied after insertion of the coarse delays, but in that case the timing
of the switching would have to include a further delay equal to the coarse delay, which varies with time.

The ∼ 60 Walsh functions required for FASR can each be stored as 64 bits at an antenna and read out at
intervals Δ = 0.3125 ms. To include the τg delay in the timing of the two switchings, it would be adequate
to update the delay of the switching whenever τg changed by ∼ 1μs. The maximum rate of change of τg for
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the 5 km baseline is 1.21× 103 μs per second (from Section 1) or 1 μs in 14 min.

4 Conclusion
The following limitations on the on the signal processing result from consideration of 20 GHz observing
frequency and 5 km baselines.
1.) The coarse delays can be reset at 20 ms intervals, i.e. between signal averaging periods.
2.) For the fine delay corrections, it can be assumed that the required phases remain linear with time for up
to 10 sec for the highest frequency (600 MHz) channel.
3.) The approximate maximum fringe frequency is 24 Hz for 20 GHz frequency and 36 Hz for 30 GHz.
4.) For the fringe rotation correction it can be assumed that the correction remains linear with time for up
to 1.8 sec.
5.) For up to 64 antennas the minimum interval between switch transmissions for any Walsh function is
0.312 ms, and equal numbers of the Cal and Sal forms should be used. Functions with the lowest number of
transitions within the time base should be used for the most distant antennas.

To determine tolerable limits on various parameters above, east-west baselines and the highest fringe
frequencies, etc. have been considered. For calculation of geometric delays and fringe frequencies for any
baseline and hour angle see, for example, Thompson et al. (2001), Eq. 4.1, in which the component w is equal
to the path length to the antenna relative to the Xλ, Yλ,Zλ coordinate origin, measured in wavelengths. If
Xλ, Yλ, and Zλ in Eq. 4.1 are replaced by X, Y, and Z measured in meters, w becomes the path difference
in meters which, divided by c, is the geometric delay relative to the coordinate origin. The fringe frequency
is the first derivative of ντg with respect to time.

Appendix

To calculate the loss in sensitivity resulting from the incremental adjustment of the instrumental compen-
sating delays we note that for a pair of antennas the combined delay error Δτ introduces an error in the
fringe phase. For a component of the signal at frequency ν , the phase error is 2πνΔτ . The output of the
correlator is proportional to the cosine of the phase error. For the component at frequency ν the variation
of the delay error shown in Fig. 1 results in a response equal to

2
∫ τs

0

p(Δτ ) cos(2πνΔτ )dΔτ =
2
τs

∫ τs

0

(
1 − Δτ

τs

)
cos(2πνΔτ )dΔτ =

[
sin(πντs)

πντs

]2

. (4)

Then the response factor for the full frequency band 0 to Δν is equal to

1
Δν

∫ Δν

0

[
sin(πντs)

πντs

]2

dν = 2
∫ 1

2

0

[
sin(πx)

πx

]2

dx = 0.774, (5)

where we have put x = ντs for convenience in numerical evaluation of the integral.
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